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Fluctuations for Kawasaki Dynamics
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In this paper Kawasaki dynamics are considered. Lower bounds are obtained
for the variance of the occupation time of a site in any dimension and for tem-
perature above critical temperature. These lower bounds are expressed in terms
of the density correlation function and hence relate the fluctuations to some
phase transition quantities. At critical temperature, under a reasonable assump-
tion of the static structure function, lower bounds for the variance of the occu-
pation time are obtained. These lower bounds are consistent with the supposed
value of the critical exponent. This paper also examines the same problem for
Glauber dynamics and shows that the phase transition may not be of impor-
tance for the behavior of fluctuations.
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1. INTRODUCTION

In this article we are interested in the variance of the occupation time
of a site for an interacting particle system known as Kawasaki dynamics.
Formally, the dynamics is a Markov process whose state space (or
configuration space) is �={0,1}Z

d
. A configuration η describes the occu-

pation of sites in the sense that η(x)=1 if there is a particle on site x and
η(x)=0 otherwise. This interacting particle system (ηt )t�0 consists of par-
ticles performing random walks over sites of Z

d with jump rates depend-
ing on the interaction with the other particles and satisfying the exclusion
rule: there is at most one particle by site. Consequently, a particle sitting
on site x jumps to site y with rate c(x, y, η) only if the site y is not occu-
pied by an another particle (otherwise the jump is canceled). For suffi-
ciently high temperature β−1, if the jump rates c(x, y, η) satisfy detailed
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balance condition, there exists a unique Gibbs measure µρ,β (depending
on the density ρ and the inverse temperature β) under which the dynam-
ics is reversible and hence invariant (see Section 2 for a precise statement).

Let us fix the density ρ and the inverse temperature β and consider
the gas in thermal equilibrium under the Gibbs measure µρ,β . We will
often omit the index β (or ρ), when the temperature and density will be
fixed. The expectation with respect to µρ,β is denoted by 〈·〉. The quantity
of interest is the density–density correlation function

ut (x)=〈ηt (x)η0(0)〉−ρ2 (1.1)

The Fourier transform of ut , also known as structure function in the phys-
ical literature, is defined by

ût (k)=
∑

x∈Zd

e2iπk·xut (x), k∈ [0,1]d (1.2)

The static compressibility χ =χ(ρ,β) is given by

χ =
∑

x∈Zd

u0(x)= û0(0)

This quantity is well defined for β<βc where βc is the inverse critical tem-
perature defined as βc = sup{β; χ(ρ,β)<+∞}.

For general Kawasaki dynamics, the knowledge about the density–
density correlation function is limited. Nevertheless, we know that time
correlations cannot decay exponentially because of the conservation law
(cf. ref. 13, p. 176)

ut (0)=〈ηt (0)η0(0)〉−ρ2 � ct−d/2

In this article, we are not directly interested in the density–density
correlation function but in the time t variance σ 2

t of the occupation time
of a site. This last quantity is related to the density–density correlation
function by the following formula

σ 2
t =Eρ,β

[∫ t

0
(ηs(0)−ρ)ds

]2

=2
∫ t

0
(t− s)us(0)ds (1.3)

where Eρ,β stands for the expectation with respect to the law of the
process (ηt )t�0 starting from µρ,β .
Here is our main theorem.
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Theorem 1.1. If β <βc, we have the following lower bounds for the
Laplace transform of the time t variance σ 2

t :

lim
λ→0

inf n(λ)
∫ +∞

0
e−λtσ 2

t dt�






C1χ(ρ)
3/2 for d=1

C2χ(ρ)
2 for d=2

Cd

∫

k∈[0,1]d

û2
0(k)∑d

j=1 sin2(πkj )
dk for d�3

where Cd is a positive constant independent of ρ,β and the normalization
function n(λ) satisfies

n(λ)=






λ3/2 for d=1
λ2(− logλ)−1 for d=2
λ2 for d�3

In a Tauberian sense, this theorem means that






lim inf{ t−3/2σ 2
t }> 0 for d=1

lim inf{ (t log t)−1σ 2
t }>0 for d=2

lim inf{ t−1σ 2
t }>0 for d�3

Remark that the normalization function is the same as the function given
by Kipnis(4) for the simple symmetric exclusion process (see Section 4).

More interesting than the normalization function is the dependence
on the compressibility (and on the structure function for the dimension
d � 3) of the lower bounds. These bounds are valid for any temperature
greater than the critical temperature. In dimension d=1,2, they are clearly
divergent as β → βc. The case of the dimension d � 3 is more intricate.
Indeed, it is conjectured (ref. 13, pp. 209–210) that for β = βc, the static
structure function is of the following form

û0(k)∼k→0 ‖k‖−2+η (1.4)

with the critical exponent η=0.03 for d=3 and η=0 for d�4. Assuming
this fact, we obtain that the lower bounds remain finite as β goes to βc
if and only if d � 7. In fact, at critical temperature, assuming that (1.4)
reflects the real behavior of the static structure function, we are able to
give lower bounds for the Laplace transform of the time t variance of the
occupation time. This is the content of the following theorem
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Theorem 1.2. Assume that at inverse critical temperature βc, the
static critical structure function is of the form

û0(k)=|k‖−2+η	(k)

where 	 is a bounded continuous function such that 	(0)>0 and η is the
static critical exponent given by η= 1/4 for d = 2, η= 0.03 for d = 3 and
η=0 for d�4.
Then we have

lim
λ→0

inf n(λ)
∫ ∞

0
dte−λtσ 2

t dt >0

where n(λ) is given by

n(λ)=






λ38/15 for d=2
λ(11−4η)/(4−η) for d=3
λ5/2 for d=4
λ9/4 for d=5
λ2| log(λ)|−1 for d=6
λ2 for d�7

The paper is organized as follows: in Section 2, we recall some facts
about Kawasaki dynamics. In Section 3, we give the proof of Theorem 1.1.
The Section 4 is devoted to some remarks concerning the generalized dual-
ity which is at the origin of the proof of our results. In the Section 5, we
obtain Theorem 1.2. In the last section, we examine the occupation time
of a site for Glauber dynamics.

2. KAWASAKI DYNAMICS

In this section, we recall general facts presented in ref. 13. The state
space for the lattice gas is �={0,1}Z

d
where d is the dimension of the lattice.

A configuration η describes the occupation of the sites in the sense that
η(x)=1 if there is a particle on site x and η(x)=0 otherwise. The dynamics
of the lattice is defined through the jump rates c(x, y, η)= c(y, x, η): with
rate c(x, y, η), there is exchange of the occupancies at the pair of sites x and
y. The generator of the Markov jump process is given by

(Lf )(η)=
∑

x,y∈Zd

c(x, y, η)
[
f (ηxy)−f (η)] (2.1)
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where f is a local function on � and ηxy is as usual the configuration
obtained from η by exchange of the occupation variables η(x) and η(y).

We will assume the following conditions for the nonnegative jump
rates:

• There exists a finite positive number R such that

c(x, y, η)=0 whenever |x−y|>R (2.2)

and such that c(x, y, η) depends on η only through {η(u)/|x−u|�R, |y−
u|�R}.

• Let τa be the shift by a ∈ Z
d defined by (τaη)(x)= η(x− a). For

all a, x, y ∈Z
d and η∈�

c(x, y, η)= c(x+a, y+a, τaη) (2.3)

By convention, we will take c(x, y, η) = 0 if η(x) = η(y) and to avoid
degeneracies, we assume that c(x, y, η) > 0 for |x − y| = 1, η(x) �= η(y).
Under these conditions, the Markov process (ηt )t�0 with generator defined
by Eq. (2.1) is well defined and the set of local functions is a core for L
(cf. ref. 6).

Consider a finite range and translation invariant ferromagnetic potential
(JA)A⊂Zd with inverse temperature given by β > 0. The formal Hamilto-
nian of the dynamics is

H(η)=
∑

A⊂Zd

JAη
A

where for a finite subset A of Z
d

ηA=
∏

z∈A
η(z)

Of course, the Hamiltonian is not defined in infinite volume but the
energy difference between the configurations ηxy and η is meaningful:

(�xyH)(η)=−
∑

A,x,y /∈A
(JA∪{x} −JA∪{y})(η(x)−η(y))ηA (2.4)
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The jump rates are supposed to satisfy the following detailed balance
condition:

c(x, y, η)= c(x, y, ηxy) exp[−β(�xyH)(η)] (2.5)

To simplify, we will assume that c(x, y, η) is a bounded function
	(β�xyH(η)) of the energy difference times the inverse temperature β (for
example, 	(E)= (1+ eE)−1).

The lattice gas is considered under a shift invariant Gibbs state µ

associated to potential (JA)A and temperature β−1. It means that µ is a
probability on � satisfying the following DLR equations

µ
({η(x)=1 |η{x}c }

)=
(

1+ exp

[
β
∑

x∈A
JA\{x}ηA\{x}

])−1

where η{x}c is an arbitrary outside configuration on {x}c.

In the sequel we will denote by ρ the conserved density and the Gibbs
measure with density ρ and temperature β−1 by µρ,β . Remark that the
detailed balance condition gives the reversibility of the process under µρ,β .
The expectation with respect to µρ,β will be denoted by 〈·〉ρ,β . The sub-
scripts ρ,β will be often omitted when there will be no confusions.

We will assume the Gibbs measure µρ,β satisfies the following expo-
nential mixing for β<βc: There exist constants C=C(β,ρ), γ =γ (β, ρ)>0
such that

∣∣∣〈η(x)η(0)〉−ρ2
∣∣∣�Ce−γ |x| (2.6)

This reasonable assumption has not been proved for any potential
(JA)A. Nevertheless, it has been established for (JA)A such that JA = 0
if |A| � 3 (e.g. the Ising model) and in a more general context, for
one-component spin systems with distribution belonging to the Griffiths–
Simon class and decaying faster than the Gaussians (cf. ref. 1).

Under this assumption, the static structure function û0 and the com-
pressibility χ(ρ) = ∑

x∈Zd
(〈η(x)η(0)〉 − ρ2) are well defined. Since the

potential is assumed ferromagnetic, we have (cf. Theorem 1.21, chapter IV,
of ref. (7)):

∀x ∈Z
d , 〈η(x)η(0)〉−ρ2 �0
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Hence, the compressibility χ(ρ) is a nonnegative function of the density
ρ. Moreover, if χ(ρ)= 0 then 〈η(0)2〉 − ρ2 = 〈η(0)〉 − ρ2 = ρ − ρ2 = 0 and
hence ρ = 0 or ρ = 1. Since these cases are irrelevant, we will assume in
the sequel that the density ρ belongs to (0,1). Hence, the compressibility
χ(ρ) is positive. The density ρ and inverse temperature β are now fixed.

The idea of the proof of the main theorem is inspired from general-
ized duality that we explain briefly in Section 4. Nevertheless, the paper is
self-contained without this section. Hence, we introduce here some nota-
tions of Section 4 in our context. Let E be the class of all finite subsets
of Z

d and En the subsets of Z
d with n points. For each A∈E , let 
A be

the local function


A(η)=
∏

x∈A
(η(x)−ρ)

and by convention 
∅ = 1. It is easy to check that {
A;A∈ E} is a basis
of L

2(µρ,β). We will denote by Fn the subspace generated by {
A;A∈En}.
The functions of Fn are called functions of degree n.

If f is any element of L
2(µρ,β) then we can decompose it in the basis

{
A;A∈E} and we have

f =
∑

n�0

∑

A∈En
f(A)
A (2.7)

Denote by 〈·, ·〉 the inner product on L
2(µρ,β). Remark that if f, g are two

elements of L
2(µρ,β), then we have

〈f, g〉=
∑

A,B∈E
f(A)g(B)J (A,B) (2.8)

where J (A,B)=〈
A,
B〉. We note the L
2 norms by

‖f ‖2
0 =‖f‖2

0 =
∑

A,B∈E
f(A)f(B)J (A,B)

Let Gn be the subspace generated by finite supported functions of degree
n. Remark that G1 is the set of local functions from Z

d into R.
In general, this basis is not orthogonal and spaces Fn are not

invariant under the action of L. Nevertheless, it is the case up to a ren-
ormalization factor for the symmetric simple exclusion process.
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3. OCCUPATION TIME OF A SITE IN A REVERSIBLE LATTICE GAS

WITH HARD CORE EXCLUSION

Let us recall that the time t variance of the site 0 is given by

σ 2
t =Eρ,β

[∫ t

0
(ηs(0)−ρ)ds

]2

We follow the method given in ref. 2. First, we express the Laplace trans-
form of the time t variance in terms of the generator. Secondly, we give
a variational formula for this expression. Using the basis {
A; A∈ E}, a
lower bound for the variational formula is obtained. We recall that the
Laplace transform of the time t variance σ 2

t is given by (cf. ref. 11):

∫ +∞

0
e−λtσ 2

t dt=2λ−2〈(η(0)−ρ), (λ−L)−1(η(0)−ρ)〉 (3.1)

Lemma 3.1. There exist positive constants C=C(d) independent of
β,ρ such that

lim
λ→0

inf
{
m(λ)〈(η(0)−ρ), (λ−L)−1(η(0)−ρ)〉

}

�






C1χ(ρ)
3/2 for d=1

C2χ(ρ)
2 for d=2

Cd

∫

[0,1]d

û2
0(k)∑d

j=1 sin2(πkj )
dk for d�3

where the normalization factor m(λ) is defined by

m(λ)=






λ1/2 for d=1
(− log(λ))−1 for d=2
1 for d�3

Proof. Let us introduce some notations. The Dirichlet form D(f )=
−〈f,Lf 〉 associated to the process (ηt )t�0 is given by

D(f )= 1

2

∑

x,y∈Zd

〈c(x, y, η) [f (ηxy)−f (η)]2〉 (3.2)
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Since the jump rates are uniformly bounded, there exists a positive
constant M such that

D(f )�M
〈
∑

|x−y|=1

[
f (ηxy)−f (η)]2

〉
(3.3)

We have the following variational formula (cf. Lemma 2.1 of ref. 2):

〈f, (λ−L)−1f 〉 = sup
g

{2〈f, g〉−〈g, (λ−L)g〉} (3.4)

= sup
g

{
2〈f, g〉−λ‖g‖2

0 −D(g)
}

(3.5)

where the supremum is taken over all local functions g. To obtain a lower
bound, we can restrict this supremum over the functions of degree one
and use the inequality (3.3). If g is a local function of degree one then
g=∑x∈Zd

g(x)
x . It is easy to see that

D(g)�M
∑

|x−y|=1

(g(x)−g(y))2 (3.6)

We have hence the following estimates for the function (η(0)−ρ)=
0(η)

〈(η(0)−ρ), (Mλ−L)−1(η(0)−ρ)〉

� sup
g




2
∑

x∈Zd

J (0, x)g(x)−Mλ
∑

x,y∈Zd

g(x)J (x, y)g(y)−M
∑

|x−y|=1

(g(x)−g(y))2






�
1

M
sup
g




2
∑

x∈Zd

u0(x)g(x)−λ
∑

x,y∈Zd

g(x)u0(y−x)g(y)

−
∑

|x−y|=1

(g(x)−g(y))2




 (3.7)

where we recall that the density correlation function u0 is defined by

u0(x)=J (0, x)=〈η(0)η(x)〉−ρ2 (3.8)

Of course, the last supremum can be extended to functions g such
that

∑
x∈Zd

g2(x)<+∞. If φ(x) is an integrable function over Z
d (for the

counting measure), we define its Fourier transform by

φ̂(k)=
∑

x∈Zd

φ(x) exp(2iπk ·x) (3.9)

where k∈ [0,1]d .
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Thanks to exponential mixing (2.6), the static structure function û0 is
well defined and smooth. Since û0 is a real function, û0 is even. Remark
that û0(0)=χ(ρ) is positive because the density belongs to (0,1). In fact,
the static structure function has the following form

û0(k)=χ(ρ)+ θ(k)γ (k) (3.10)

where θ(k) = 4
∑d
j=1 sin2(πkj ) and γ (k) is a smooth function. Indeed,

since u0 is even, we can rewrite the static structure function as

û0(k)=χ(ρ)−2
∑

x

sin2(πx ·k)u0(x) (3.11)

with
∑
x |x|2|u0(x)|<+∞. A Taylor’s expansion gives (3.10).

By Parseval’s relation, we get

〈(η(0)−ρ), (Mλ−L)−1(η(0)−ρ)〉
�

1

M
sup
φ

{
2
∫

k∈[0,1]d
û0(k)φ̂(k)dk−λ

∫

k∈[0,1]d
û0(k)|φ̂(k)|2 dk

−
∫

k∈[0,1]d
θ(k)|φ̂(k)|2 dk

}
(3.12)

Choose the function φλ defined by its Fourier transform as

φ̂λ(k)=
û0(k)

λû0(k)+ θ(k)
(3.13)

For λ sufficiently small, the function φ̂λ(k) is in L
2(Td). Indeed, we have

λû0(k)+ θ(k)=λχ(ρ)+ θ(k)(1+λγ (k)) (3.14)

and the function γ is bounded thus for λ sufficiently small, λû0(k)+θ(k)�
λχ(ρ)>0.

Moreover, this function is the Fourier transform of a real function
since we have φ̂λ

∗
(1−k1, . . . ,1−kd)= φ̂λ(k1, . . . , kd) (here φ̂λ

∗
is the com-

plex conjugate of the function φ̂λ). We have then

〈(η(0)−ρ), (Mλ−L)−1(η(0)−ρ)〉�
1

M

∫

k∈[0,1]d

û2
0(k)dk

λû0(k)+ θ(k)
(3.15)
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Let us call I (λ, û0) the last integral:

I (λ, û0)=
∫

k∈[0,1]d

û2
0(k)dk

λû0(k)+ θ(k)

It is an “explicit” functional of the static structure function û0. Define
now Cd by

Cd =






lim
λ→0

inf λ1/2I (λ, û0) for d=1

− lim
λ→0

inf(logλ)−1I (λ, û0) for d=2

lim
λ→0

inf I (λ, û0) for d�3

(3.16)

For d=1,2, the limit above is explicit and depends only on the compress-
ibility χ . For d�3, it depends on the all values of the function û0. More
exactly, we have

Cd ∼






χ
3
2 for d=1

χ2 for d=2
∫

[0,1]d

û2
0(k)

θ(k)
dk for d�3

(3.17)

Indeed, for d�3, it is trivial since 1/θ(k) is integrable on [0,1]d and
û0(k) is a bounded function. We just give the proof for d=1 since the case
d=2 can be obtained in the same way. Recall Eq. (3.10) and use that û0
is even to write

λ
1
2 I (λ, û0) = 2

∫ 1
2

0

(χ +γ (k)θ(k))2
λû0(k)+ θ(k)

dk

= 2χ2λ
1
2

∫ 1
2

0

dk

λû0(k)+ θ(k)
+4χλ1/2

∫ 1
2

0

γ (k)θ(k)

λû0(k)+ θ(k)
dk

+2λ1/2
∫ 1

2

0

γ (k)2θ2(k)

λû0(k)+ θ(k)
dk

Since γ, û0 are smooth functions, the two last terms of the last right
hand side go to zero with λ. Just the first term remains

J (λ, û0)=λ
1
2χ2

∫ 1
2

0

dk

λû0(k)+ θ(k)
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Let ε > 0. There exists some α < 1/2 (depending on û0) such that for
0�k�α, û0(k)� (1+ ε)χ . Since θ(k)� θ(α)>0 as soon as k�α, we have

lim
λ→0

inf J (λ, û0)= lim
λ→0

inf λ
1
2χ2

∫ α

0

dk

λû0(k)+ θ(k)

Now,

lim
λ→0

inf λ
1
2χ2

∫ α

0

dk

λû0(k)+ θ(k)
� lim

λ→0
inf λ

1
2χ2

∫ α

0

dk

λ(1+ ε)χ + θ(k)
(3.18)

� lim
λ→0

inf λ
1
2χ2

∫ α

0

dk

λ(1+ ε)χ +π2k2

(3.19)

= (1+ ε)−1
2 χ

3
2

∫ ∞

0

dt

1+π2t2
(3.20)

Taking the limit as ε goes to zero, we get that there exists a constant C1
independent of λ,β, ρ such that

lim
λ→0

inf λ
1
2 〈(η(0)−ρ), (λ−L)−1(η(0)−ρ)〉 � C1χ

3
2 .

4. GENERALIZED DUALITY

The main ideas in the proofs of the theorems were inspired by
generalized duality methods, which were introduced by Landim and
Yau in ref. 5 and developed in several papers. The recent efforts have
concentrated essentially on simple exclusion process, the simplest example
of Kawasaki dynamics.

One of the reasons for which generalized duality methods have been
so powerful in the understanding of the simple exclusion process is that
the equilibrium states are given by Bernoulli product measures. It is not
clear these methods can be adapted with such great success for gen-
eral Kawasaki dynamics. In the present article, interesting facts for these
dynamics are obtained using only “basic” generalized duality methods.
A second step would be to further develop these methods in order to
improve the results given here. For example, finding upper bounds for the
occupation time of a site would be of high interest.

Following the suggestion of an anonymous referee, we give here a
short presentation of these methods which appear often in technically too
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involved papers. In this section, the focus is on the occupation time of a
site for the symmetric simple exclusion process. The problem is sufficiently
simple to demonstrate in a few lines an important part of the results
obtained by Kipnis in ref. 4. The section also briefly mentions how the
methods have to be adapted for the asymmetric case.

The simple exclusion process is a Kawasaki dynamics considered at
infinite temperature, where the only interaction between particles is due to
the exclusion rule (at most one particle by site). More explicitly, it is a
Kawasaki dynamics (ηt )t�0 of the form introduced in Section 2 with jump
rates c(x, y, η) given by

c(x, y, η)=p(y−x)η(x)(1−η(y))

where p is an irreducible transition probability on Z
d with finite range.

Let µρ be the Bernoulli product measure with parameter ρ∈ [0,1] on �. If
p is symmetric (p(x)=p(−x) for any x∈Z

d ), the process (ηt )t�0 is revers-
ible under the Bernoulli product measure µρ for any ρ ∈ [0,1]. Here, the
parameter ρ is in fact the conserved density of particles. If p is asymmet-
ric (i.e. nonsymmetric) then for any ρ the Bernoulli product measure µρ
remains invariant for the process but it is no longer reversible.

As in Section 2, we introduce the class E of finite subsets of Z
d and

the class En of subsets of Z
d with n points. We fix ρ∈ (0,1). For each A∈

E , let 
A be the local function


A(η)=
∏

x∈A

(η(x)−ρ)√
ρ(1−ρ)

and by convention 
∅ =1. It is easy to check that {
A;A∈E} is an ortho-
normal basis of L

2(µρ). This property is particular to Bernoulli product
measures and is false if µρ is replaced by a Gibbs measure associated to
a general potential (JA)A as in Section 2. Indeed, the random variables
(η(x)−ρ) are in general correlated in this case.

We will denote by Fn the subspace generated by {
A;A ∈ En}. The
functions of Fn are called functions of degree n. If f is any element of
L

2(µρ) then we can decompose it in the basis {
A;A∈E} and we have

f =
∑

n�0

∑

A∈En
f(A)
A (4.1)
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Denote by 〈·, ·〉 the inner product on L
2(µρ). If f, g are two elements of

L
2(µρ), then

〈f, g〉=
∑

A∈E
f(A)g(A) (4.2)

We adopt the following notations for the L
2 norms

‖f ‖2
0 =‖f‖2

0 =
∑

A∈E
f(A)2

Let Gn be the subspace generated by finite supported functions of degree n.
Remark that G1 is just the set of local functions from Z

d into R. We have:

L
2(E)=

⊕

n�1

Gn.

The generator L of the simple exclusion process acts on the local functions
f of L

2(µρ) as:

(Lf )(η)=
∑

x,y∈Zd

p(y−x)η(x)(1−η(y))(f (ηx,y)−f (η))

and gives hence an operator L on L
2(E). More exactly, if f is a local

function with the following decomposition

f =
∑

A∈E
f(A)
A

then

Lf =
∑

A∈E
(Lf)(A)
A

Before giving the explicit form of the operator L, we need to intro-
duce notations. For a subset A of Z

d and x, y in Z
d denote by Ax,y the

set defined by Ax,y =A\{x} ∪ {y} if x ∈A and y /∈A, Ax,y =A\{y} ∪ {x} if
y ∈A and x /∈A and Ax,y =A otherwise. Let s(·) and a(·) be the symmet-
ric and antisymmetric part of the transition probability p(·). In the basis
{
A;A∈E}, we have the following decomposition of the operator L:

L=T+A

where A= (1−2ρ)L2 +2
√
ρ(1−ρ)(L+ −L−), with
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(Tf)(A) = (1/2)
∑

x,y∈Zd

s(y−x) [f(Ax,y)− f(A)
]

(L2f)(A) =
∑

x∈A,y /∈A
a(y−x) [f(Ax,y)− f(A)

]

(L−f)(A) =
∑

x /∈A,y /∈A
a(y−x)f(A∪{x})

(L+f)(A) =
∑

x∈A,y∈A
a(y−x)f(A−{y})

For example, consider the symmetric simple exclusion process for
which s = p and a = 0. We have L = T and A = 0. The expression of
T shows L = T lets Sn invariant. Moreover, L restricted to Sn is the
infinitesimal generator of n particles in symmetric simple exclusion. This
property is known as “duality property” and express that the symmetric
simple exclusion process has a dual process which is the symmetric simple
exclusion process. This property was already observed by Spitzer but for-
mulated in a different way (cf. ref. 12). The formulation of Spitzer was
the following. Consider n particles moving according to symmetric simple
exclusion. The location of the particles at time t define a random subset
At ∈ En. The generator of the Markov process (At )t�0 is T |Sn

. Let P
A

denote the law of (At )t�0 starting from A∈En and Pµ the law of the sym-
metric simple exclusion (ηt )t�0 with initial measure µ. Then

Pµ

(
∏

x∈A
ηt (x)=1

)
=P

A



µ




∏

x∈At
η(x)=1







 (4.3)

The formulation here is more algebraic and is applicable to the nonsym-
metric case. Indeed, if p is asymmetric, the duality relation Eq. (4.3)
is false. The restriction of operator L to Sn is not the generator of a
Markov process. In fact, L does not let Sn invariant. Nevertheless, the
algebraic expression above can be used to make estimates even if the orig-
inal process has not really got a dual process. The previous Markov gener-
ator T is just replaced by a complex operator T+A. It explains the term
of “generalized duality”.

We look now at our initial problem with the symmetric simple
exclusion process. Let us recall that the time t variance of the site 0 is
given by

σ 2
t =Eρ

[∫ t

0
(ηs(0)−ρ)ds

]2
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where Eρ denotes the expectation with respect to the law of the symmetric
simple exclusion process (ηt )t�0 starting from µρ .

We show here how the generalized duality allows recovery of certain
results obtained by Kipnis in ref. (4). As in Section 3, we express the
Laplace transform of the time t variance in terms of the generator. Sec-
ondly, we give a variational formula for this expression. Using generalized
duality, we compute explicitly the value given by the variational formula.
We recall that the Laplace transform of the time t variance is given by:

∫ +∞

0
e−λtσ 2

t dt = 2λ−2〈(η(0)−ρ), (λ−L)−1(η(0)−ρ)〉
= 2ρ(1−ρ)λ−2〈
{0}, (λ−L)−1
{0}〉

Thanks to the variational formula (3.4), we have

〈
{0}, (λ−L)−1
{0}〉 = sup
g

{
2〈
{0}, g〉−〈g, (λ−L)g〉}

where the supremum is taken over all local functions g. Using generalized
duality, this variational formula can be rewritten as

〈
{0}, (λ−L)−1
{0}〉 = sup
g

{2g(0)−〈g, (λ−L)g〉}

Now, the supremum is carried over finite supported functions from E to R.
Recall now the transition probability p is symmetric. Hence, Lg is given
by

(Lg)(A)= (1/2)
∑

x,y∈Zd

p(y−x) [g(Ax,y)−g(A)
]

In particular, if g has the following decomposition

g=
∑

n∈N

gn

where for each n∈N, gn belongs to Sn, we have

〈g, (λ−L)g〉=
∑

n∈N

〈gn, (λ−L)gn〉
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since L let Sn invariant and Sn is orthogonal to Sm for m �=n. Hence, we
can restrict the supremum over functions belonging to S1 and we obtain

〈
{0}, (λ−L)−1
{0}〉 = sup
g∈S1

{2g(0)−〈g, (λ−L)g〉}

A little computation shows that if g :Zd →R is a finite supported function
then

〈g, (λ−L)g〉=λ
∑

x∈Zd

g2(x)+ 1

4

∑

x,y∈Zd

p(y−x) [g(x)−g(y)]2

The Laplace transform of the time t variance of site 0 is then given by

∫ +∞

0
e−λtσ 2

t dt

=2ρ(1−ρ)λ−2 sup
g∈S1




g(0)−λ
∑

x∈Zd

g2(x)− 1

4

∑

x,y∈Zd

p(y−x)[g(x)−g(y)]2






This last expression is similar to the expression found in Section 3. Using
Fourier calculus, we compute it explicitly (see Section 3 for more details)
and we get

2ρ(1−ρ)
λ2

∫ 1

0

dk

λ+ θ(k)

where θ(k)=∑z∈Zd
sin2(πk · z)p(z).

There is an important difference with Section 3: we have here an
equality between the Laplace transform of the time t variance and the last
variational formula. Having the exact expression of the Laplace transform,
it is easy to obtain behavior of σt as t goes to infinity thanks to classi-
cal Tauberian theorems. To simplify notations, assume that p(z)= (2d)−1

if |z|=1. We have






limt→∞ t−3/2σ 2
t =ρ(1−ρ) 8

3
√

2π
for d=1

limt→∞(t log t)−1σ 2
t =ρ(1−ρ) 2

π
for d=2

limt→∞ t−1σ 2
t =2ρ(1−ρ) ∫∞

0 qs(0,0)ds for d�3
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where qs(x, y) is the transition probability at time s of the standard
d-dimensional symmetric random walk. These last limits were soon obtained
by Kipnis.(4)

Consider now the case where the simple exclusion process is not sym-
metric. We have still a variational formula to express the Laplace trans-
form of the time t variance σ 2

t but a term due to the antisymmetric part
of the generator appears:

∫ ∞

0
e−λtσ 2

t dt

=2ρ(1−ρ)λ−2 sup
g

{
g(0)−〈g, (λ−T)g〉−〈Ag, (λ−T)−1Ag〉

}

In order to obtain a lower bound, we restrict the supremum over degree
one functions. Even if g ∈ S1, we have Ag ∈ S1 ⊕ S2. The presence of
degree 2 functions add difficulties to estimate the supremum. In particular,
an approximation of particles in exclusion by “free particles” is needed.
We refer the interested reader to ref. 2.

5. OCCUPATION TIME AT CRITICAL TEMPERATURE

Theorem 1.1 gives behavior of the occupation time for β<βc. In this
section, we obtain lower bounds for the time t variance of the occupa-
tion time σ 2

t at critical temperature under a reasonable assumption on
the static structure function. We will see that our results are consistent
with some conjectures formulated in ref. 13, pp. 209–210. Let us denote
by uct (x) (resp. ûct (k)) the density–density correlation function (resp. the
structure function) at the critical temperature. The critical static structure
function, obtained for t=0, is supposed to be of the form

ûc0(k)=‖k‖−2+η	(k)

where 	 is a continuous bounded function with 	(0) > 0 and η is the
critical exponent. In dimension 2, the scaling form above is known with
η=1/4 from the Onsager solution. For dimension 3, approximate methods
give η=0.03 and for dimension d�4, we have η=0.

The method presented in Section 3 can be applied without major
modification. We have

〈(η(0)−ρ), (Mλ−L)−1(η(0)−ρ)〉
�

1

M
sup
φ

{
2
∫

k∈[0,1]d
ûc0(k)φ̂(k)dk−λ

∫

k∈[0,1]d
ûc0(k)|φ̂(k)|2dk
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−
∫

k∈[0,1]d
θ(k)|φ̂(k)|2dk

}
(5.1)

Choose the function φλ defined by its Fourier transform

φ̂λ(k)=
ûc0(k)

λûc0(k)+ θ(k)
= 1

λ+ θ(k)

ûc0(k)

(5.2)

The function φ̂λ(k) is in L
2(Td) for λ>0. Indeed, the only problem is in

0 and we have

φ̂λ(k)∼0
1

λ+4dπ2	(0)−1‖k‖4−η (5.3)

Moreover, this function is well the Fourier transform of a real func-
tion since we have φ̂λ

∗
(1 − k1, . . . ,1 − kd)= φ̂λ(k1, . . . , kd) (here φ̂λ

∗
is the

complex conjugate of the function φ̂λ). We have by similar computations
to Section 3

〈(η(0)−ρ), (Mλ−L)−1(η(0)−ρ)〉�
1

M

∫

k∈[0,1]d

(ûc0)
2(k)dk

λûc0(k)+ θ(k)
(5.4)

After standard analysis, under the hypothesis concerning the criti-
cal static structure function, we rigorously obtain some lower bounds for
the Laplace transform of the time t variance σ 2

t . Hence, we have proved
Theorem 1.2.

The bounds obtained indicate that the limiting variance defined as the
limit of t−1σ 2

t as t increases to infinity is finite if and only if d�7.
A more general hypothesis consists to assume that the critical dynamic

structure function is of the form

ûct (k)=‖k‖−2+η
(‖k‖zt) (5.5)

Here, z is the dynamical critical exponent and 
 is some function
vanishing at infinity such that 
(0) = 1. The Gaussian approximation
(cf. ref. 13, pp. 209–210) suggests that

ûct (k)= ûc0(k) exp
[
−σck2|t |/ûc0(k)

]
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where σc is the conductivity of the lattice gas. Hence the critical exponent
z should be

z=4−η

But, in an another way, it is easy to show that the limiting variance
σ 2∞ is equal to (cf. ref. 10):

σ 2
∞ = lim

t→∞ t
−1σ 2

t =2
∫ ∞

0
ucs(0)ds (5.6)

Assuming that we can use the inversion Fourier transform formula, we get

σ 2
∞ =

∫ ∞

0
dt
∫

[0,1]d
dkûct (k) (5.7)

If the critical exponent is z=4−η then Eq. (5.5) gives
∫ ∞

0
dt
∫

[0,1]d
dkûct (k) =

∫ ∞

0
dt
∫

[0,1]d
dk‖k‖−2+η
(‖k‖4+ηt)

= Cd

(∫ ∞

0
ds
(s)

)∫ 1

0
r−7+2η+ddr (5.8)

where Cd is the volume of the unit sphere of R
d . Using the assumed value

of η, it appears that this last quantity if finite if and only if d�7. This fact
is consistent with our previous result.

6. SOME REMARKS ON THE OCCUPATION TIME OF A SITE FOR

GLAUBER DYNAMICS

In this section, we consider a Glauber dynamics (ηt )t�0 with inverse
temperature β>0. The state space is now �={−1,1}Z

d
and the generator

of this Markov process (ηt )t�0 is given by

(Lβf )(η)=
∑

x∈Zd

cβ(x, η)
[
f (ηx)−f (η)] (6.1)

where f is a local function on � and ηx is as usual the configuration
obtained from η by replace η(x) by −η(x). The formal Hamiltonian of
this model is

Hβ(η)=β
∑

|x−y|=1

η(x)η(y)
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We assume that the flip rates {cβ(x, η) ; x ∈Z
d} are translation invariant:

cβ(x, η)= cβ(0, τxη),

and upper bounded by some constants independent of β:

sup
x,η

{cβ(x, η)}�M,

and satisfies the detailed balance condition

cβ(x, η)

cβ(x, ηx)
= exp(−�xHβ(η)) (6.2)

where the difference energy �xHβ(η) = Hβ(η
x) − Hβ(η) = −2βη(x)∑

|y−x|=1 η(y) is well defined.
For d � 2 (resp. d = 1), if β is less than the inverse critical tempera-

ture βc (resp. for all β), there exists a unique Gibbsian measure µβ with
good ergodic properties for which the dynamics given by Lβ is reversible.
If β is fixed, µβ is denoted by 〈·〉 and the corresponding scalar product on
L

2(µβ) by 〈·, ·〉. As usual, Eβ stands for expectation with respect to the
law of (ηt )t�0 starting from µβ .

Minlos(8) obtained for the Ising model (in any dimension and for high
temperature) the asymptotics of the correlation functions. the method used
is the decomposition of the space where lives the generator Lβ into several
Lβ -invariant subspaces. He derives (Theorem 5.1 of ref. 8) the following
asymptotics for the correlations between sites x and y:

Eβ(η0(x)ηt (y))∼t→+∞
C(x−y)
t
d
2

exp(−ct) (6.3)

where C(x) is function of the site x and c a positive constant. Nevertheless,
this asymptotics are only valid for β <β0 where β0 is not explicit. Hence,
theses results are useless for β near of the inverse critical temperature.

As for the case of Kawasaki dynamics, let us consider the time t

variance σ 2
t of the occupation time of the site 0:

σ 2
t =Eβ

[(∫ t

0
ηs(0)ds

)2
]

(6.4)
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Following the method given in Section 3, lower bounds for the occupa-
tion time of a site in Glauber dynamics are given up to the inverse critical
temperature βc. In particular, it means that a diffusive or super diffusive
behavior of the occupation time is attempted at critical temperature.

Theorem 6.1. Fix the dimension d � 2. There exists some constant
A>0 (independent of β) such that for β <βc,

lim
λ→0

inf λ2
∫ ∞

0
e−λtσ 2

t dt�A

Proof. Let us denote by Dβ the Dirichlet form associated to the
generator Lβ . We have

〈η0, (λ−Lβ)−1η(0)〉 = sup
g

{2〈η0, g〉−λ〈g2〉−Dβ(g)}

where the supremum is taken over local functions. To obtain a lower
bound, we restrict the supremum over the functions of the form g(η)=∑
x g(x)η(x). Since for a such function,

Dβ(g)�4M
∑

x

g2(x)

we obtain immediately the theorem.

For the dimension 1, the situation is simpler and we obtain also an
upper bound. Indeed, for any inverse of the temperature β > 0, let γ =
tanh(β) and introduce the function 
A given by:


A(η)=
∏

x∈A

ηx −γ ηx−1

(1−γ 2)1/2

where A is a finite subset of Z
d .

{ψA;A ⊂⊂ Z} is an hibertian basis such that the subspaces Hn =
{∑|A|=nA
A ; ∑|A|=n f2(A)<+∞} are Lβ -invariant (cf. ref. 9).

Let us first consider the case where the flip rates {cβ(x, ·) ; x∈Z
d} are

of the form:

cβ(x, η)= (1+ exp(−(�xHβ)(η)))−1
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so that the Dirichlet form associated to the generator can be rewritten as:

Dβ(f )=〈−Lβf, f 〉=
∑

x∈Zd

〈[
f (ηx)−f (η)]2

〉

In this case, the Laplace transform of the time t variance is explicitly
computable and we obtain the following theorem:

Theorem 6.2. If the flip rates are of the form cβ(x, η) = (1 +
exp(−(�xHβ)(η)))−1 then

∫ ∞

0
σ 2
t e−λtdt = 2(1−γ 2)

λ2

∫ 1

0

(
λ+ 4

1−γ 2
|1−γ exp(−2iπs)|2

)−1

×|1−γ exp(−2iπs)|−2 ds

and in particular,

lim
λ→0

λ2
∫ ∞

0
σ 2
t e−λt dt=12

(
1+γ 2

1−γ 2

)

Proof. We have still the following variational formula for L(λ) =
〈η0, (λ−Lβ)−1η0〉:

L(λ)= sup
f

{
2〈f, η(0)〉−λ〈f 2〉−Dβ(f )

}

For each a ∈ Z, η(a) is a function belonging to H1 whose decomposition
on the basis is:

η(a)= (1−γ 2)1/2
∑

k�0

γ k
a−k (6.5)

In particular, η(0) is a degree one function. Hence, the supremum in the
preceding variational formula can be carried over the set of local functions
belonging to H1. Using (6.5), if f =∑k∈Z

φ(k)
k is a degree one function, we
have:

Dβ(f )=
4

1−γ 2

∑

k∈Z

[γφ(k+1)−φ(k)]2 (6.6)
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and

2〈f, η0〉=2
√

1−γ 2
+∞∑

k=0

γ kφ(−k) (6.7)

Hence we have to maximize the following expression over φ

2
√

1−γ 2
+∞∑

k=0

γ kφ(−k)−λ
∑

k∈Z

φ(k)2 −4(1−γ 2)−1
∑

k∈Z

[γφ(k+1)−φ(k)]2 (6.8)

As in the preceding section, we use Fourier calculus to express (6.8) in
the following form

2
√

1−γ 2
∫ 1

0

φ̂(s)

1−γ exp(−2iπs)
ds

−
∫ 1

0

(
λ+4(1−γ 2)−1 |1−γ exp(−2iπs)|2

) ∣∣∣φ̂(s)
∣∣∣
2

ds (6.9)

Let ψ̂(s)= (1−γ exp(−2iπs))−1φ̂(s). We have therefore to maximize over
functions ψ the integral of a quadratic expression of ψ̂ :

∫ 1

0

{
2
√

1−γ 2ψ̂(s)−
(
λ+4(1−γ 2)−1 |1−γ exp(−2iπs)|2

)

|1−γ exp(−2iπs)|2 |ψ̂(s)|2
}

ds

The supremum of this functional over the functions ψ is given by

(1−γ 2)

∫ 1

0

(
λ+ 4

1−γ 2
|1−γ exp(−2iπs)|2

)−1

×|1−γ exp(−2iπs)|−2 ds (6.10)

The limit as λ goes to zero yields

�= (1−γ 2)2

4

∫ 1

0
|1−γ exp(−2iπs)|−4 ds (6.11)

Standard complex analysis gives us the value of �. Indeed, let us denote
by C the circle {z∈C; |z|=1}. � is equal to

(1−γ 2)2

8γ 2iπ

∫

C

zdz

(z−γ )2(z−γ−1)2



Fluctuations for Kawasaki Dynamics 851

and

z

(z−γ )2(z−γ−1)2
= a

z−γ + b

(z−γ )2 + c

z−γ−1
+ d

(z−γ−1)2
(6.12)

where a, b, c, d are complex constants. It is easy to see that a= γ 2(γ 2 +1)

(1−γ 2)3

and that the three last terms of the right-hand side of (6.12) have a null
integral over C. Hence, by Cauchy formula, we have

�= lim
λ→0

〈η(0), (λ−Lβ)−1η(0)〉= 1

4

(
1+γ 2

1−γ 2

)
. (6.13)

Let us now consider the general case. We will say that two functions
depending on some parameters and β are equivalent and we will note
f �g if there exist some positive constants c,C > 0, independent of β,
such that cf (β)�g(β)�Cf (β).

In the general case, the assumptions on the flip rates show that :

∑

x∈Zd

〈[
f (ηx)−f (η)]2

〉
�Dβ(f )

Consequently, the Laplace transform �β(λ) of the time t variance is
equivalent to (1 +γ 2)/(1 −γ 2)� exp(2β). But �β(λ) is a decreasing func-
tion of λ and using a classical tauberian (Theorem 2, XIII.5 of ref. 3), we
have the following corollary.

Corollary 6.3. If the flip rates {cβ(x, ·)|x ∈ Z} satisfy the detailed
balance condition (6.2), then the following limit exists

σ 2
∞ = lim

t→+∞ t
−1σ 2

t

and

σ 2
∞ � exp(2β)
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et Synthèses, 2001), pp. 75–100.

11. S. Sethuraman, Central limit theorems for additive functionals of exclusion proceses,
Ann. Probab. 28:277–302 (2000).

12. F. Spitzer, Interaction of Markov processes, Adv. Math. 5:246–290 (1970).
13. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer-Verlag, New York,

1991).


